TEMPERATURE DISTRIBUTION IN A REPEATEDLY
HEATED POLYMER

A, T. Nikitin and V, L.. Bobrov UDC 536.21

The conduction problem is presented and solved for a hollow two-layer cylinder having the
first layer made of a polymer; the internal boundary moves and there is repeated heating
from within, Allowance is made for the heat of reaction in the first layer.

We consider repeated heating from within for a hollow two-layer cylinder whose first layer is of
polymer and whose second layer is highly conducting (steel, copper, etc.). Convection and radiation are
responsible for the heat transfer between the polymer and the hot gas on the inside, and also between the
second layer and the medium on the outside. The polymer on heating undergoes changes that absorb heat,
release gaseous decomposition products, and alter the thermophysical parameters of the material, When
the inside surface of the polymer reaches the failure temperature T, it starts to move with a speed v(r).
The cylinder cools internally and externally when the heating stops (Fig.1). The processes all repeat dur-
ing the next heating cycle in accordance with the altered thermophysical characteristics and the tempera-
ture distribution,

The following is the heat-balance equation for an elementary volume of the first layer:
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Here the left side is the heat passing through an elementary section at r in time Ar, while the first
term on the right is the heat passed by an elementary section at r + Ar in time A7 and the second term is
the amount of heat absorbed by the intervening layer in time A7, which raises the temperature by AT, while
the third term is the heat absorbed by phase and chemical changes in that volume and the fourth term is the
heat needed to raise the temperature by AT in time A7 for the gases formed in the section r to R,

The following assumptions are made: a) the gas escapes from the material almost instantaneously;
b) the gas takes up the temperature of the material while passing through the pores; c) the gas does not
react with the residue,

Then (1) becomes
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Here A, c, and y are dependent on T and on the previous history of the material, while ¢
of the gas formed.

g is the specific heat

TABLE 1, Heat of Decomposition ag a Function of Tem-

perature
T, °K 293 373 473 573 673 ‘ 773 ! } 873 ' 2073
H ‘ 0 ! 0,84 ‘ 2,5 } 4,2 1 4,2 l 2,5 ) 0,84 1 0

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 18, No, 1, pp. 139-145, January, 1970, Original
article submitted March 20, 1969,
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Fig.1l. Section through cylinder,

Fig.2. Temperature~-distribution curves for the polymer, heated for seven
periods of 30 sec at 30 sec intervals,

The initial condition is T(O, r) = T(r).

The boundary conditions are as follows for the internal boundary I'(r) of the maf:erial and the external
boundary at r = R:

oT ,
oT oT
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T(R; 1) =T, (R; 7).
Condition (3) neglects reactions between the gas and the residue,.

The following are the initial and boundary conditions for the second layer:

oT, T, h, (0T, \*. A T,
— M 0Ty 5)
e ( ar r or (
7,00, =T, (6)
T, (R, ) =T(R; ), (7
Ay oT, :}VEZ‘_ for r=R,
or . or (8)
Tk =, (T, —T) +e0 (TE— T} for 7 =R,

~ Calculations show that the temperature difference across the second layer is only a few degrees for
a temperature of several hundred degrees when a thick polymer layer is in contact with a thin highly con-
ducting second layer. We therefore neglect equations (5)-(8) and replace the effect of the second layer on
the first by a thermal-capacity term in the boundary condition (4), which becomes

l£=ac(Tc—T)+so(T“———T")—-_—ClylGlgI— for r=R, (9)
or € dt
' 61 = R1 - R.
The equation for the boundary I'(r) is
T .
(v =ro+j'u(r)dr, (10)

0
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where v(7) is determined by experiment for T = Ty vr) = Ofor T< Ty, where Ty is the surface tempera~-
ture at which flow occurs on account of mechanical disruption of the char by the gas flow,

To (2) we apply
r=r@+x[R-T@], 0<x<1 (11)

to refer this to an equation for a fixed boundary, which gives
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Then 8T/dr is replaced in the boundary conditions by

1 o
R—T{xm ox’

Equation (12) with the boundary conditions has been solved by the grid method [1] with an M-20 com-~
puter,

The following are the working formulas for T:
Av
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Fig,3. Envelope temperature (°C) for polymer material, a)
12 mm, b) 17 mm, thick, Curves 1), 2) continuous heating
for 200 sec; 3), 6) seven heatings of different lengths at 30
sec intervals; 4), 12) 42 sec intervals; 4), 7) heating for one
period of 165 sec and six of five sec at 30 sec intervals; 10},
13) 42 sec intervals; 5), 8) heating for 75, 40, 30, 20, 10 and
10 sec, intervals 70, 40, 30, 20, 10, 10 sec; 11), 14) inter-
vals 90, 55, 45, 30, 20, 10 sec,
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The time step is chosen from
=)
n
A< . (16)
2max AT
c{T)y(T)

Tables as follows [for A (T)] supply A(T), c(T), and y(T): A(T) = A;(T) for Ty = T = Ty, if the tempera~
ture has not yet risen above Ty, and A(T) =A,(T) (T, = T = Ty) if the temperature at previous times has
been above Ty, and A4 (T) =A,(T) for T > T, where Ty is the temperature above which there is no con-
siderable change in the density of the material,

It is envisaged that y follows an Arrhenius law:

3 - E
= — [y —w (D) kexp (_Ef)‘ (17)

Then (11) transforms to

a gy —) eT  dM(T) 1 ( T )2

R—I'(@m o2  dr [R—TO®] \ax

1 1 or 1
TToTR=TE] "D Rorw Ta T TOTRR—TE]

i

1 oT E
X R_Tm —ax—j‘ [v(@) — v (T)] exp(—ﬁ:) (f +x[R —T @]}[R—T ()] dx

X

\

T v(l—x) dT ]+H(T)[Y(T)-Yh(T)]keXp(——EI:)’

ox R—T(1) ox

=c<T>v(r>[

£ E
=Y —& T) — v, (T)] exp | —— ) d=.
V6 = Yok [ 1O w D] e p( RT)

Figure 2 shows the temperature distribution in the polymer on repeated heating, The second layer
heats up considerably during the halts in the heating, because there are large temperature gradients at the
boundary between the layers at the instant when the heating stops [2].

Figure 2 shows that 8T/ax? has an inflection in the region 573-673°K, which coincides with the peak
in H(T), which means that the layer at 573-673%K acts as a barrier during transfer of heat from the polymer
to the second layer, When that layer reaches 773-873°%K, the temperature of the shell starts to rise rapidly,
which indicates that the polymer has charred completely, -

Figure 3 shows the temperature as a function of time for the second layer under various conditions of
heating,

The curves of Figs,2 and 3 have been calculated for ry = 0.3 m, Tg = 2073°K, initial temperature of
material and medium 293K, ¢, = 5.8, gas temperature within the cylinder 2273K, ¢; = 116, and &; = 0.9
during heating,
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The other characteristics are dependent on T: €; (degree

THepa ¢ of blackness of the internal surface) varies from 0.8 to 0.5
1500 500 g7 (293-2073K), &, varies from 0.6 to 0,7 (293-2073K), c; = 460-
A, 545 (293-1173°K). Figure 4 shows how the thermophysical para-
. / Ay meters vary with T, while Table 1 gives H(T).
1000000 5 1

All the curves of Fig. 3 have been calculated for a total heat-
ing time of 200 sec with arbitrary cooling intervals, Figure 3a
50015604025 is for polymer 12 mm thick, while Fig,3b is for 17 mm. Curves
1 and 2 show the temperature of the shell during continuous heat-
ing for 200 sec. The following conclusion can be drawn from
%5 877 200 T curves 1, 2, and the rest: the shell temperature with arbitrary
heating is 2-3 times that for continuous heating for a fairly wide
range of polymer thicknesses., We thus naturally have the con-
cept of the conditions worst as regards shell temperature, i.e.,
heating and cooling times (with a fixed overall heating time) such as to give the highest temperature for
the shell.

AN

Fig,4, Thermal characteristics of
material with temperature,

This latter condition was determined by a special search program.
The results of Fig. 3 show that the worst conditions occur when the first few heating cycles constitute
a large fraction of the total heating time.

NOTATION

is the temperature, K;
is the time, sec;
is the radius, m;

,c,y are the thermal parameters of material, W/m K, J/kg K, N/m?;
is the heat of polymer decomposition, J/kg;
{» @, are the heat transfer coefficients, W/m?;

is the thickness of envlope, m;

is the effective emissivity;

is the velocity of inner boundary, m/sec;

is the angle;

is the coordinate along cylinder generatrix,

NRdo e m>R Y

Subscripts

i refers to the gas inside the cylinder;
o refer to the gas outside the cylinder,
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